Stochastic Models of Lagrangian Acceleration of Fluid Particle in Developed Turbulence
نویسنده
چکیده
Modeling statistical properties of motion of a Lagrangian particle advected by a high-Reynolds-number flow is of much practical interest and complement traditional studies of turbulence made in Eulerian framework. The strong and nonlocal character of Lagrangian particle coupling due to pressure effects makes the main obstacle to derive turbulence statistics from the three-dimensional Navier-Stokes equation; motion of a single fluid-particle is strongly correlated to that of the other particles. Recent breakthrough Lagrangian experiments with high resolution of Kolmogorov scale have motivated growing interest to acceleration of a fluid particle. Experimental stationary statistics of Lagrangian acceleration conditioned on Lagrangian velocity reveals essential dependence of the acceleration variance upon the velocity. This is confirmed by direct numerical simulations. Lagrangian intermittency is considerably stronger than the Eulerian one. Statistics of Lagrangian acceleration depends on Reynolds number. In this review we present description of new simple models of Lagrangian acceleration that enable data analysis and some advance in phenomenological study of the Lagrangian single-particle dynamics. Simple Lagrangian stochastic modeling by Langevin-type dynamical equations is one the widely used tools. The models are aimed particularly to describe the observed highly non-Gaussian conditional and unconditional acceleration distributions. Stochastic one-dimensional toy models capture main features of the observed stationary statistics of acceleration. We review various models and focus in a more detail on the model which has some deductive support from the Navier-Stokes equation. Comparative analysis on the basis of the experimental data and direct numerical simulations is made.
منابع مشابه
Wave Evolution in Water Bodies using Turbulent MPS Simulation
Moving Particle Semi-implicit (MPS) which is a meshless and full Lagrangian method is employed to simulate nonlinear hydrodynamic behavior in a wide variety of engineering application including free surface water waves. In the present study, a numerical particle-based model is developed by the authors using MPS method to simulate different wave problems in the coastal waters. In this model flui...
متن کاملLagrangian stochastic models for turbulent relative dispersion based on particle pair rotation
The physical picture of a fluid particle pair as a couple of material points rotating around their centre of mass is proposed to model turbulent relative dispersion in the inertial range. This scheme is used to constrain the non-uniqueness problem associated to the Lagrangian models in the well-mixed class and the properties of the stochastic process derived are analysed with respect to some tu...
متن کاملComputational fluid dynamics simulation of the flow patterns and performance of conventional and dual-cone gas-particle cyclones
One of the main concerns of researchers is the separation of suspended particles in a fluid. Accordingly, the current study numerically investigated the effects of a conical section on the flow pattern of a Stairmand cyclone by simulating single-cone and dual-cone cyclones. A turbulence model was used to analyze incompressible gas-particle flow in the cyclone models, and the Eulerian–Lagrangian...
متن کاملJoint statistics of acceleration and vorticity in fully developed turbulence
We report results from a high resolution numerical study of fluid particles transported by a fully developed turbulent flow at Rλ = 280. Single particle trajectories were followed for a time range spanning more than three decades, from less than a tenth of the Kolmogorov time-scale up to one large-eddy turnover time. We present results concerning acceleration statistics and the statistics of tr...
متن کاملComparison of Turbulent Particle Dispersion Models in Turbulent Shear Flows
This work compares the performance of two Lagrangian turbulent particle dispersion models: the standard model (e.g., that presented in Sommerfeld et al. (1993)), in which the fluctuating fluid velocity experienced by the particle is composed of two components, one correlated with the previous time step and a second one randomly sampled from a Wiener process, and the model proposed by Minier and...
متن کامل